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In a highly interesting paper [1] Theodossiades and Natsiavas studied the non-linear
dynamics of a gear-pair system with backlash, periodic mesh sti!ness and external
excitation due to torsional moments and errors of the teeth geometry. The equation of
motion is written in the normalized form
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where the backlash is represented by the function
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The parameter e is small. The parameters f
0

and f
1

are related to the amplitudes of the
static and the periodic excitations. X and h denote the frequency and the phase of the
periodic excitation. In the case of simultaneous fundamental parametric resonance and
principal external resonance, four types of periodic steady state solutions are determined by
techniques applicable to piecewise linear systems and to systems with time-periodic
coe$cients. In addition, an appropriate stability analysis is established. In the second part
of the paper [1] the e$ciency of these analytical techniques is illustrated by comparing with
the results obtained by direct numerical integration of the equation of motion. For some
choices of the parameters complex behavior is found including boundary crises and
intermittent chaos. With e"0)03, k"0)1, f

0
"0, f

1
"2)5, h"0, a period-doubling

cascade with respect to the parameter X was detected. In their Figure 10 the
authors provide response histories at X"0)226 (1P solution having the same period
as the excitation), 0)22195 (2P solution), 0)2215 (4P solution) and 0)221314 (intermittent
chaos).

I would like to make the following comment on the paper. It is to be emphasized that
there exists another period-doubling cascade in the same range of the forcing frequency,
which has not been mentioned in reference [1]. In order to illustrate the existence of both
cascades, equation (1) is integrated by the use of the Runge}Kutta}Hu\ ta method of order
six [2, 3], which is a very accurate scheme. The transient regime is deleted and the PoincareH
section point for u at t"0 with the sampling period P"2n/X is plotted in terms of the
parameter X. Figure 1 represents the bifurcation diagram for the cascade mentioned in
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Figure 1. First cascade of period-doubling bifurcations (Type A) in the range 0)221)X)0)227.
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reference [1] (called here as Type A). It has been established by continuation with respect to
the parameter X starting at X"0)227 for which a 1P solution is found with u"0)75088,
uR "0)32439 as the co-ordinates of the PoincareH section point corresponding to t"0 in the
phase plane. Three transitions are discerned in this "gure occurring at X+0)2256
(1PP2P), 0)22175 (2PP4P) and 0)22133 (4PP8P) respectively. Periodic motion with
period 8P is readily seen. In the limit chaotic motion sets in. In the zone of chaos the
PoincareH section points extend to the region !1)u)1)8.

The author found the second period-doubling cascade (called Type B) in the same
frequency range by continuation in terms of the parameter X starting with another 1P
solution at X"0)227. This solution is readily obtained by direct numerical integration and
its PoincareH section point at t"0 is given by u"0)83514, uR "!0)33332. Figure 2 shows
the second cascade in which the subsequent transitions 1PP2P, 2PP4P and 4PP8P
take place at X+0)2259, 0)2220 and 0)22155 respectively. The complete bifurcation
diagram in terms of X ranging from X"0)221 to 0)227 consists of both parts (Figures 1
and 2) superposed.

One of the most reliable criteria for determining the coexistence of periodic or chaotic
attractors is to study their basins of attraction. In this technique (see reference [4]) one
considers a grid of initial conditions in the phase plane. By integrating system (1) for each set
of initial conditions, the periodic and chaotic attractors that the orbit approaches are
searched for. A di!erent color is assigned to each initial condition in terms of the relevant
attractor that is approached. Figure 3 illustrates the basins of attraction for the case with
X"0)224. It was constructed using a 200]200 grid of pixels in the domain of the phase
plane given by 0)u)1)5 and !0)6)uR )0)6. In this case, two periodic attractors occur
both having the period 2P with the following co-ordinates (u, uR ) of the PoincareH section



Figure 2. Second cascade of period-doubling bifurcations (Type B) in the range 0)221)X)0)227.
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points corresponding to t"0 in the phase plane:

Type A: (0)81359, 0)32082), (0)59534, 0)31810);

Type B: (0)89868, !0)32770), (0)69057, !0)32923).

The basins of attraction were constructed by the use of Nusse and Yorke's package
DYNAMICS [5]. The basins of attraction are colored in magenta for Type A motion and in
light blue for Type B motion. Highly fractal areas in the initial condition space arise
indicating an increase of uncertainty in initial conditions. The percentage of pixels for the
basin of attraction for periodic motion of Type A amounts to 41% and 59% for Type B
motion. It is to be mentioned that the pattern of the basins of attraction shown in Figure 3 is
a typical one in the sequences of period-doubling bifurcations represented in Figures 1 and
2. A rather similar pattern is obtained for the case with X"0)227, i.e., at the entrance of the
cascades.

It has been pointed out that the response histories in Figure 10 from reference [1], which
corresponds to 1P, 2P and 4P motion, are each related to periodic motion of Type A. For
comparison, Figure 4 shows the response history of the periodic motion of Type B having
the period 1P in the case with X"0)226. A kind of mirroring occurs with respect to the
vertical axis as compared to Figure 10, part (a), in reference [1] for the same value of X.
Type B motion is characterized by double-sided impacts (a maximum displacement value of
u larger than 1 and a minimum value smaller than !1) like the motion of Type A
mentioned in reference [1].

In conclusion, the non-linear dynamics of the relevant gear-pair system with periodic
sti!ness and backlash is more complex than described in reference [1]. In the frequency
region determined by 0)221)X)0)227, there exist two cascades of period-doubling
bifurcations. The study of the basins of attraction reveals that the two coexisting basins are
highly intertwined and are fractal. Therefore, the occurrence of the second cascade of



Figure 3. Basins of attraction in the phase-plane for the case X"0)224 (two coexisting periodic attractors both
having the period 2P) with 0)u)1)5 and !0)6)uR )0)6. Colors used (gray levels) for basins: dark gray for
Type A and light gray for Type B.

Figure 4. Response history of periodic motion of Type B with period 1P at X"0)226.
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period-doubling bifurcations certainly has to be mentioned in the description of the very
complex dynamics of the gear-pair system.
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